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Abstract—In this paper a scenario is considered in which a
group of predators cooperate to maximize the number of prey
captures over a finite time horizon on a two-dimensional plane.
The emphasis is on developing predator strategies, and thus the
behavior of the prey agents is fixed to a Boids-like flocking model
which incorporates avoidance of nearby predators. At each time
instant, the predators have control authority over their heading
angle; however, we restrict the headings to be governed by one of
five different pre-specified behaviors. No communication occurs
between the predator agents – each agent determines its own
control without knowledge of what the other predators will
implement; thus, the predator strategies are fully decentralized.
The full state space of the system is collapsed to a set of features
which is independent of the number of prey. An evolutionary
algorithm is used to evolve an anchor point controller wherein
the anchor point lies in the feature space and has a particular
predator behavior associated, thus providing a candidate solution
to the question of “what to do when”. The two predator case is
the focus in this work, although the ideas could be applied to
larger groups of predators. The strategies resulting from the
evolutionary algorithm favor aiming at the nearest prey mostly,
and also avoiding having the predators getting too close and then
pursuing the same prey. Thus useless behaviors are generally not
present among the elite at the end of the evolutionary process.

I. INTRODUCTION

Cooperation is essential to the survival and success of
many different species of animals. Remarkable feats are made
possible through cooperative behaviors which emerge from
relatively simple processes at the individual level. For exam-
ple, consider the nest building, foraging, and decision making
abilities that insect ‘societies’ are capable of [1], while at the
same time only possessing a modest amount of processing
power. Similarly, cooperation among autonomous vehicles (or
more abstractly, agents) may enable new types of tasks to
be accomplished or better performance on existing tasks.
Particularly interesting is the use of cooperation within a group
in adversarial scenarios between groups or species. In nature,
these scenarios include collective defense such as meerkat
mobbing [2], distributed nest defense [3], and musk oxen
who press together with their horns facing outward [4], [5];
cooperative predation such as the yellowsaddle goatfish [6],
wolves [7], and dolphins [8]; and cooperative sensing such as
predator inspection performed by guppies [9].

Biological systems have evolved such innovative ways
of cooperating that they often serve as the inspiration for

optimization algorithms [5], robotic control algorithms [10],
[11], [12], and methods for designing controllers (e.g. via
evolutionary algorithms) [12], [13], [14]. Regarding the design
of controllers, the difficulty often lies in the dimensionality
of either the state space or the control space. Genetic algo-
rithms, for example, tend to settle in local optima when the
chromosome encoding the controller is large. One approach
to reducing the size of control space is to constrain the
controller at the outset based on heuristics or expert knowledge
(c.f. [14], [15]). This approach finds its roots in Connell’s
ideas of minimalist robotics [16], wherein he discussed how a
controller comprised of a few simple behaviors could mostly
account for the seemingly complex behavior of a snail. Of
course, the principle of simplicity in robotic control was
heavily inspired by Braitenberg Vehicles whose two sensors
are directly connected to its two motors; the different ways
of connecting sensors to motors results in fundamentally
different, but understandable behaviors [17].

The focus, in this paper, is on a particular type of predator-
prey interaction, though aspects of some of the other nat-
ural cooperative behaviors were influential in the problem
setup and technical approach. An analogous relationship is
that between a pursuer and an evader which is prevalent in
controls and optimization literature (see, e.g., [18]). Often,
differential game theory is employed to obtain saddle-point
equilibrium strategies for the pursuer and the evader depending
on the particular cost functional being considered. This type
of analysis is typically only possible for systems with simple
dynamics and/or few numbers of agents. For example, the two-
pursuer one-evader game of min/max capture time was solved
in [19] wherein the two pursuers employ a “pincer” maneuver
to reduce the capture time of the evader w.r.t. either of their in-
dividual capture times. Similarly, Breakwell et al. [20] solved
the one-pursuer two-evader game of min/max capture time
(of the second evader captured). Other cost functionals have
been explored in the one-against-two game which drastically
changes the equilibrium control strategies [21].

We consider, here, a similar style of pursuit-evasion (or
predator-prey) game with similar (single-integrator) dynam-
ics but with much larger numbers of prey. Also, while the
mentioned literature pits two against one (or vice versa),
we explore a two-against-many scenario. The goal of the



two predators is to maximize the collective number of prey
captured within a specified time horizon. They do so without
communicating or directly coordinating with their fellow team-
mate, whereas teammates in a differential game context are
essentially treated as a single entity. Thus our control strategy
is inherently decentralized, which more closely represents
a biological system. In order to focus on the cooperation
of the predators, in particular, the prey control strategy is
fixed to a Boids-like controller (c.f. [22]). As a result, the
predators can learn to exploit the underlying prey flocking
behavior by affecting the shape of the prey distribution. The
predator control is based on a nearest-neighbor approach based
on [14], though we consider the weighted nearest-neighbor
here. Each predator measures the (meta) state of the system
and implements the baseline behavior associated with the
nearest anchor point.

These approaches and concepts are applicable to behavior
generation for non-player characters (NPCs) as well as military
training simulations. In particular, a neural network-based con-
troller was evolved using a genetic algorithm for a real-time
strategy (RTS)-like game in [13]. To contrast, the controller
structure we employ here is not a neural network and we are
focused on movement and positioning (as opposed to game
elements like resource gathering). A neural network controller
generated via genetic algorithm was also employed in [23]
where the emphasis was on so-called “multi-modal” behaviors.
One of the games considered was a fight or flight game
where at any given time the player is executing one or other
particular behavior; this concept of a multi-modal behavior
or controller is quite related to this paper. Reference [24]
addresses generation of NPC behaviors but from the angle of
planning (e.g., via meta-heuristic search) which occurs on a
much larger timescale than the type of control we focus on in
this paper. Finally, the application of artificial intelligence and
game concepts to military training simulations is demonstrated
in [25] on task allocation and planning problems with an
emphasis on “explainability”.

The contributions of this paper are listed as follows: (i)
specification of baseline cooperative predator strategies; (ii)
specification of many-against-many metastates; (iii) an an-
chor point control architecture based on weighted nearest
anchor point; and (iv) a decentralized predator control strategy
which outperforms a baseline strategy. Section II contains
the problem formulation. Sections III and IV describe the
prey model and predator model, respectively. The controller
structure is also specified in Section IV. Section V specifies the
evolutionary algorithm along with all of the genetic operators
particular to the control structure we employ. Simulation
results are contained in Section VI, and Section VII concludes
the paper.

II. PROBLEM FORMULATION

The environment in which the scenario takes place is
a flat plane with no boundaries or obstacles. Let the
predator positions be given as P1 = (xP1

, yP1
),P2 =

(xP2 , yP2) ∈ R2. Similarly, the prey positions are de-
noted by Ej = (xEj

, yEj
) ∈ R2 for j ∈ 1, . . . ,M , and

M ∈ Z. Let the full system state be denoted as x =[
P>1 P>2 E>1 . . . E>M

]>
. In general, it is assumed that

the maximum predator and prey speeds, vP and vE , are
such that vP > vE , and that agent speeds are homogeneous
within each respective group. All the agents move with simple
motion, i.e.,

Ṗi = vP

[
cosψi
sinψi

]
, Ėj = v̄E

[
cosφj
sinφj

]
,

where ψi, φj ∈ [0, 2π] are the instantaneous heading angle
of predator i and prey j, respectively, and v̄E ∈ [0, vE ]. Note
that the predator is assumed to always move with its maximum
speed whereas the prey is allowed to slow down (subject to the
prey model discussed in detail in Section III). For the purposes
of numerical simulation, the scenario takes place in discretized
time and the agents’ headings are computed/updated simulta-
neously. Thus the discrete time step tk = k∆t ∈ [0, T ], where
T is the time horizon of the simulation and is an integer
multiple of ∆t, and k ∈ {1, 2, . . . , T/∆t}. Throughout the
remainder of the paper, we generally refer to the current po-
sitions of the agents without explicitly stating its dependence
on time (e.g. Ej rather than Ej(tk)).

Capture is said to occur when a predator comes within a
distance dc of a prey agent. An indicator function Icap(i, j, tk)
is used to represent predator i (i ∈ {1, 2}) capturing prey j in
time step tk:

Icap(i, j, tk) =

{
1 if ‖Pi −Ej‖ ≤ dc,
0 otherwise,

(1)

where ‖·‖ is the Euclidean norm. Once a prey agent has
been captured, it is effectively removed from the scenario
and the capturing predator is free to move on to other targets
immediately thereafter.

The predators have a shared goal of maximizing the number
of prey captured over a time horizon of T simulation seconds,

U (ψ1 (x(t)) , ψ2 (x(t))) =

2∑
i=1

M∑
j=1

∑
tk

Icap(i, j, tk), (2)

where ψi (x(t)) is the state-feedback control law of predator
i. In practice, (2) must be modified to exclude double-counted
captures (i.e. when prey j is within dc of both predators).
Because the utility is shared, this scenario is not an example of
by-product mutualism, wherein cooperation arises from selfish
acts, as in [6]. With the prey behavior fixed, the aim of this
study is to design a state-feedback controller for the predators.

III. PREY MODEL

The behavior of the prey agents is governed by a Boids-
like model (c.f. [22]); this section describes the details of the
model. In order to mimic the flocking behavior of animals,
the Boids model introduces inertia into the agents’ motion
and models various influences as virtual forces. The virtual
forces governing the behavior of the prey are alignment,



cohesion, and separation [22] as well as avoidance (of nearby
predators). Another augmentation to the original Boids model
is the inclusion of a finite sensing radius, r, for the prey. That
is, a prey agent only knows, or takes into consideration, the
positions of predators and prey within r distance of its current
position. Here, we treat the prey agents as if they have unit
mass.

Three sets are used in formulating the virtual forces. The
first is the set of prey agents within the sensing radius r,

Rj := {j′ | j′ 6= j, ‖Ej −Ej′‖ ≤ r} . (3)

Next is the set of prey agents within a desired minimum
separation distance s,

Sj := {j′ | j′ 6= j, ‖Ej −Ej′‖ ≤ s} . (4)

Last is the set of predators within the sensing radius r,

Pj := {i | ‖Ej −Pi‖ ≤ r} . (5)

The current centroid of prey positions and velocity vectors
within distance r of prey j are respectively given by

Ēj =
1

|Rj |
∑
j′∈Rj

Ej′ ,
˙̄Ej =

1

|Rj |
∑
j′∈Rj

Ėj′ . (6)

Alignment is based on the principle that the prey naturally
seek to align their velocity with the overall direction of travel
of the flock,

Falij =
˙̄Ej

‖ ˙̄Ej‖
. (7)

Cohesion provides some influence for prey to gravitate towards
the centroid of prey positions which prevents the flock from
splitting apart,

Fcohj =
Ēj −Ej
‖Ēj −Ej‖

. (8)

Because the agents represent some physical entity, a force
designed to maintain a desired minimum separation distance,
s, is necessary,

Fsepj =
1

|Sj |
∑
j′∈Sj

Ej −Ej′

‖Ej −Ej′‖2
(9)

In this case, the contribution due to each neighboring prey is
distance-weighted to prioritize nearer violators of the desired
minimum separation distance. Finally, avoidance forces the
prey to flee from predators within the sensing radius r,

Favoj =
1

|Pj |
∑
i∈Pj

Ej −Pi
‖Ej −Pi‖2

. (10)

Again, closer predators provide more force.
With all of the necessary forces defined, the (candidate)

velocity update law of the prey is given as,

Ė′j(tk) = Ėj(tk−1) + ∆t (waliFali
+wcohFcoh + wsepFsep + wavoFavo) ,

(11)

where the w’s are weights corresponding to the level at which
the prey are influenced by each force. Then the candidate

velocity is passed through a saturation function to ensure it
does not exceed the maximum prey speed,

Ėj =

{
Ė′j if ‖Ė′j‖ ≤ vE ,
Ė′j

vE
‖Ė′j‖

otherwise. (12)

IV. PREDATOR MODEL

The overall predator control approach is based on the idea
of specifying simple atomic behaviors and then letting the
predator decide which behavior to implement in each time
step. Unlike the prey, the predators have full access to the
state, x (the positions of each agent). Each predator selects
its own atomic behavior to implement – that is, they do
not collaborate on which behavior to select. We emphasize,
again, that this approach is decentralized, in contrast to more
explicit cooperative maneuvers in studies like [15] which
require communication.

A. Atomic Behaviors

The first atomic behavior is the pursue behavior wherein
the predator, Pi, aims directly at the nearest prey agent. The
index of the nearest prey agent is given by

j∗ = arg min
j
‖Pi −Ej‖, (13)

and the associated heading angle is

ψpur = atan2
(
yEj∗ − yPi

, xEj∗ − xPi

)
, (14)

where atan2 is the four-quadrant inverse tangent function.
In the one-pursuer, one-evader differential game of min max
capture time with simple motion this is, in fact, the equilibrium
strategy for the pursuer (c.f. [18]). Note, this may not be
optimal for the predator since the prey is not necessarily
implementing its equilibrium strategy. Nonetheless, it is robust
to any prey strategy. It is also useful here as the one-on-one
pursuit-evasion game may be considered to be a subproblem
to the overall scenario.

Next, the converge and diverge behaviors are based
on mixing pure convergence (i.e. aiming directly towards the
predator centroid) or divergence (i.e. aiming directly away
from the predator centroid) with aiming at the prey centroid.
Inclusion of diverge is partly based on [26], wherein the
author utilized an intra-predator repulsive force in controlling
a group of pursuers pursuing a single evader in a decentralized
fashion. Let M ′ be the number of prey currently living; the
angles from the predator to the prey centroid and predator
centroid are given as

ψĒ = atan2

∑
j

yEj

M ′

− yPi
,

∑
j

xEj

M ′

− xPi

 ,

(15)

ψP̄ = atan2

((∑
i′

yEi′

N

)
− yPi

,

(∑
i′

xEi′

N

)
− xPi

)
,

(16)



respectively. Then the converge and diverge behaviors
are governed by

ψcon = atan2 (m sinψP̄ + sinψĒ,m cosψP̄ + cosψĒ) ,
(17)

ψdiv = atan2 (−m sinψP̄ + sinψĒ,−m cosψP̄ + cosψĒ) ,
(18)

where m is the mixing weight; the larger m the more the
behaviors approach pure convergence/divergence.

The last two behaviors, drive and flank, both make
use of an angle, ψden, which represents the angle from the
predator to the highest distance-weighted density of prey.
Kernel Density Estimation (KDE) is used to compute an
estimate of ψden. First, the angles from the predator to each
living prey are computed as

ψi,j = atan2
(
yEj − yPi , xEj − xPi

)
. (19)

Then the distribution of ψi,j is smoothed via the following
estimator:

f̂h(ψ) =
1

hM ′

∑
j

1

‖Pi −Ej‖
K

(
ψ − ψi,j

h

)
, (20)

where h > 0 is the bandwidth of the estimator and K is the
kernel. For this study, the bandwidth is set using Silverman’s
Rule [27], and the standard Gaussian distribution is used for
the kernel. Finally, the angle from the predator to the highest
distance-weighted density of prey is defined as

ψden = arg max
ψ

f̂h(ψ). (21)

The drive behavior is governed by

ψdri = ψden, (22)

thus the predator aims always in the direction of maximum
distance-weighted prey density. The main purpose of including
this behavior is to avoid the potential pitfall of wasting time
pursuing a single prey agent away from an advantageous
cluster of prey.

Influence over the distribution or shape of the prey flock
is the main purpose of the flank behavior. In general, it
is better for the predators when the prey are highly concen-
trated; however, once a predator approaches, the flock will
evade and disperse. Thus the flank behavior is designed to
aim the predator in a direction tangential to the flock. Let
i′ = arg mini‖Pi −Pi′‖ be the index of the predator closest
to the ith predator.

ψfla = ψden −
π

2
· sign

([
cosψden
sinψden

]
× (Pi′ −P)

)
(23)

The last term ensures that the tangential direction is one which
points away from the nearest predator.

Figure 1 shows a pictorial representation of each of the
predator behaviors. Although pursue and drive (and, simi-
larly diverge and flank) appear quite similar, the presence
of additional prey can effect more obvious distinctions.

(a) pursue (b) converge (c) diverge

(d) drive (e) flank

Fig. 1. Demonstration of each of the five predator behaviors. The red dashed
line indicates the direction of maximum distance-weighted density of prey,
ψden .

B. Meta State

The overall state of the system at any given time step is
essentially the positions of all of the predators and all of the
prey agents who have not yet been captured. One may consider
including another state for the prey which specifies whether a
particular agent is alive or dead, but ultimately the positions of
dead prey agents ought not have any bearing on the predator’s
decisions. Aside from the variability in the size of the state
space, the main issue is that even with a few living prey agents
the number of dimensions is quite large. In an effort to avoid
the curse of dimensionality, and to be able to function in the
presence of many prey agents, it is prudent to collapse the
positional state information into a smaller (meta) state space.

Let the centroid of all currently living prey be Ē =
1
M ′

∑
j Ej . For the ith predator, we define the meta state as

x̂i(tk) =



minj‖Pi −Ej‖
‖P1 − Ē‖

...
‖PN − Ē‖
‖Pi −P 6=i‖

...


, (24)

where N is the number of predators. The meta state is
comprised of the distance to the nearest prey, the distances
from each predator to the prey centroid, and the distances to
each other predator; x̂i ∈ R2N . For N = 2 predators the size
of the meta state space is 4, regardless of the number of prey
in the simulation.

C. Controller Structure

In order to limit the complexity of this initial study, we
consider the predators to be homogeneous – that is, they
share the same controller, ψ, which is a function of the meta



state. Thus let ψi(x) := ψ(x̂i) for i ∈ {1, 2}. In order to
evolve the predators’ feedback controller, we need to be able
to parameterize it in such a way that will allow us to apply
crossing and mutation operations to it. For the research, we
accomplish this by using an anchor point method [14].

Anchor points a := [x̂, w, u] are comprised of a position (in
the meta state space) x̂, a weight w, and a control u. In this
case, the control is selected as one of the atomic behaviors
described in Section IV-A:

u ∈ {ψpur, ψcon, ψdiv, ψdri, ψfla} . (25)

A set of anchor points S = [a1, a2, . . . aN ] can be used
to parameterize a feedback controller by using the anchor
points as the basis for a weighted nearest neighbor switching
controller.

[x̂∗, w∗, u∗] = arg min
[x̂i,wi,ui]∈S

wi‖x̂− x̂i‖ (26)

Figure 2 shows a 2D example of a feedback controller

= Anchor Point = Current State

= Flank = Pursue = Converge

Fig. 2. Example of an anchor point feedback controller in a fictitious 2-
dimensional meta state space.

parameterized by a set of 3 anchor points. At any given state x̂,
the control can be computed by finding the weighted nearest
anchor point, a∗, by (26) and implementing the associated
control, u∗. The higher the weight associated with a particular
anchor point the further it will appear, in this case.

V. EVOLUTIONARY ALGORITHM

The evolutionary algorithm (EA) used in this research
follows a canonical EA format. We begin at generation G0

with a initial population of P candidate controllers, each of
which is comprised of nl ∼ Uniform(1, n) anchor points that
are randomly placed in the 4-dimensional meta state space
with a randomly assigned behavior and a random weight, w ∼
Uniform(0, 1). This initial population is evaluated, assigned a
fitness, and entered as the first generation of the evolutionary

loop. In each generation, the population is crossed, mutated,
and evaluated using the methods outlined in this section. Once
a predetermined number of generations is completed, the EA
ends and the candidate controller with the highest fitness is
considered the best evolved controller.

A. Crossing

Crossing begins by selecting two unique parent controllers
from the current generation. Each parent has an equal proba-
bility of being selected. The child controller is created by using
a uniform crossover technique in which each child anchor is
randomly selected from the corresponding anchors of the two
parents. This process is repeated until P children are created.
The new set of children controllers are then added into the
current population to create a combined population of size
2P .

B. Mutation

After the crossing is complete, the combined population
(comprised of both parents and children) is passed through
a mutation operation. There are two distinct types of mutation
that can occur; major and minor mutations. The probability
for these mutations to occur to a given anchor point is given
by their respective mutation rates: µM for major mutation and
µm for minor mutation.

Major mutations randomly change the value of the control
associated with a given anchor point. For example, if an anchor
point has a control value of pursue, a major mutation can
change it to a control value of drive. This can have a drastic
effect on the performance of the controller and therefor is
assigned a relatively small probability of happening: µM =
1%.

Minor mutations shift the position of a given anchor point
a small amount in a random direction. Given an anchor point
x̂ with weight w, the mutated version x̂′, w′ can be computed
as

x̂′ = x̂ + R, w′ = w + Uniform(0, 1)

where R ∈ R4 is a vector of uniform random numbers in the
range 0 to 1. Minor mutations are designed to slightly modify
the boundaries between the different regions of control and
thus will usually have a relatively small effect on the con-
trollers performance. Minor mutations are applied to anchor
points with a probability of µm = 10%

C. Fitness Evaluation

After the crossing and mutation operations have been com-
pleted, the combined population is then evaluated and each
candidate controller is assigned a fitness. The fitness is defined
as the average utility of 9 different simulations (all with the
same settings) with various initial conditions. Figure 3 shows
all 9 of the sets of initial conditions. These same 9 configu-
rations are used to assess the fitness in every generation. All
of the configurations begin with the prey concentrated in a
circular ball. In the first column of Fig. 3, the prey start with
zero velocity; the second column has the prey all moving in
the same direction at max velocity; and the third column has



Fig. 3. Suite of initial conditions to simulate to determine fitness of an
individual controller.

the prey moving with random velocities. For the predators, the
first row of Fig. 3 starts the predators relatively close together;
the second row places the two predators nearly opposite one
another w.r.t. the prey and at similar distances; and the third
row starts the predators nearly opposite one another but with
one of the predators closer to the prey. The purpose of the
different initial conditions is to expose the controller to a
variety of scenarios in an effort to avoid over-fitting to a
particular configuration. Once all the agents are assigned a
fitness, the top 30% of the combined population are selected
along with 0.4P individuals chosen from the bottom 70% to
pass on to the next generation.

Table I summarizes the settings used for the EA simulation
in the following section. Note the odd value for population
size is due to the number of cores available on the computer
in which the EA was run. In each generation, the fitness
evaluation is performed in parallel (one individual per core).

TABLE I
EA PARAMETER SETTINGS

Parameter Value Description

n 10 maximum number of anchor points
µm 0.1 minor mutation probability
µM 0.01 major mutation probability
Gmax 100 number of generations
P 190 population size

VI. RESULTS

This section contains the results of the EA as well as a
Monte Carlo simulation comparing the best evolved controller

to two baseline controllers across many different initial con-
ditions not previously seen by the EA. Table II contains the
simulation parameters used in all of the experiments. Note
that the EA-learned controller was trained for these particular
settings of prey virtual force weights. Thus the EA-learned
controller is specifically tuned to this particular prey behavior.
The cohesion weight, wcoh, in particular, is quite high in
comparison to the other forces. This is to encourage the
prey to cluster together more since we are most interested in
examining how predators should approach/maneuver around
clusters of prey. For most cases, T is not large enough for the
predators to capture all of the prey.

TABLE II
SIMULATION PARAMETER SETTINGS

Parameter Value Description

M 40 number of prey
N 2 number of predators
∆t 0.01 timestep
T 15 final time
vE 0.1 max evader speed
vP 0.2 max pursuer speed
r 0.6 prey sensing range
s 0.05 desired separation
dc 0.01 capture distance
wcoh 7 weight for cohesion force
wali 0.1 weight for alignment force
wsep 1 weight for separation force
wavo 2 weight for avoiding the predator

Figure 4 shows the evolution of the best and average utility
(over the whole population) for 100 generations. As indicated
by the consistent gap between the best and average fitnesses
at each generation, some diversity within the population is
maintained throughout the evolution. By the end of the 100
generations, the best evolved controller’s utility is 20% higher
than the baseline controller, which always uses the pursue
behavior (aim at the nearest prey).

20 40 60 80 100
Generation

0.4

0.6

0.8

1.0

1.2

C
ap

tu
re

s
/P

re
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to
r/

se
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nd

Best
Avg
Pure Pursuit

Fig. 4. Evolutionary algorithm results - best and average normalized fitness
for each generation. The gray line is the average performance of the baseline
Pure Pursuit controller on the test suite.

Figure 5 contains an animation of the best evolved con-
troller starting from a particular initial condition (seen during



evolution). For most of the simulation, the predators utilize
the pursue behavior; Table III summarizes the amount of
time spent using each of the behaviors. Interestingly, the best

Fig. 5. Simulation of the best controller evolved after 100 generations
on one of nine initial conditions in which it was tested. Also available at
avonmoll.github.io/files/pred prey.gif

TABLE III
SUMMARY OF BEHAVIORS USED IN SIMULATION SHOWN IN FIG. 5

Behavior P1 Percentage of Time P2 Percentage of Time

pursue 99.6 93.4
converge 0 0
diverge 0 0
drive 0 0.13
flank 0.4 6.47

evolved controller’s anchor points are comprised only of the
pursue, drive, and flank behaviors. Neither converge
nor diverge are even present in the controller. It appears
that these two behaviors were mostly “evolved out” of the
population (or at least moved to a remote area of the meta
state space, thereby limiting its activation). Because individual
predators are capable of capturing individual prey agents
alone, the converge behavior is almost never necessary. As
far as diverge goes, the flank behavior appears to be a
slightly more useful means of creating separation between the
predators when they come too close. Although drive and
flank are used, they are used sparingly, suggesting they are
useful only in specific circumstances. Nonetheless, the results
in Table III suggest that behaviors that are active for a small
amount of time can have a large influence on the overall utility.

Because the controllers in the EA saw the same 9 initial
conditions in each generation, over fitting is a concern. It

is possible that the controllers learned only how to handle
these 9 initial conditions and may generalize poorly for other
scenarios. In order to corroborate the performance gain of the
evolved controller over the baseline (as shown in Fig. 4) a
Monte Carlo experiment is run over 1000 different (previously
unseen) initial conditions. Figure 6 contains the results of
the Monte Carlo experiment. Compared to the Pure Drive
controller (i.e. always use drive), the evolved controller
typically captures three times the number of prey. The utility
gain over the Pure Pursuit controller is more modest – the
peak of the histogram occurs at 1, meaning the two controllers
have the same utility. Pure Pursuit outperforms the evolved
controller in less than 14% of the experiments, and the loss
is never more than 23%. The evolved controller performs
100% better than Pure Pursuit for several cases. Pure Pursuit’s
biggest drawback is that it’s possible for the predators to end
up quite close to one another; thereafter the two predators
make the same moves, always pursuing the same prey, which
is clearly a waste. Although the evolved controller only saw 9
initial conditions during evolution it was able to generalize
reasonably well, generally matching or outperforming the
baseline controllers.

VII. CONCLUSION

We considered a predator-prey scenario in which the prey’s
behavior is governed by a Boids-like flocking model and
the predators cooperate to maximize the number of captures
within the time horizon. One of the purposes of the paper was
to demonstrate the efficacy of controllers based on a small
set of pre-specified behaviors for a many-on-many type of
adversarial engagement. Moreover, we employed an evolu-
tionary algorithm to determine the appropriate base behavior
to implement as a function of a meta state space. The meta
state space we used here was independent of the number of
prey and thus the predator controller is scalable. In essence,
the meta state space is just a feature space; it is possible
that other features or functions of features could be useful
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Fig. 6. Monte Carlo results for 1000 simulations - histograms of the utility
ratio of the best evolved controller compared to two baseline controllers
(always pursue and always drive).



in determining an appropriate behavior for this particular
scenario. We introduced the notion of weighting onto the
existing anchor point control architecture in order to have
finer control over the partitioning of the meta state space.
Based on the simulation results, the optimal (or approximately
optimal) behavior for the two predator case is to aim at the
nearest prey while avoiding getting too close to the other
predator. The evolved controller was shown to have this type
of behavior, generally, and thus it performed much better than
always aiming at the nearest prey, in most cases.

Analytical solutions to many-on-many pursuit evasion prob-
lems like this one do not exist. However, approximately
optimal solutions are often intuitive. The approach used in
this study yielded an overall strategy that deconflicted the
predators when necessary and otherwise employed a con-
trol that’s optimal under several assumptions. It is possible,
perhaps, to design a controller which plans a sequence of
targets to pursue that is more optimal than always aiming
at the nearest. However, that approach would be much more
computationally complex; deconfliction would also require
either explicit communication or heuristics to avoid wasting
resources. Thus the advantages of our approach are that it is
scalable, decentralized, and simple.

We aimed to show emergent cooperative predator behav-
iors along similar lines as those described in the referenced
literature. The cooperation that was evolved in this study is
intuitive, but the predators do not spend much time “herding”
the prey or otherwise limiting prey dispersion. It is possible
that, based on our definition of the utility and the settings of the
prey model parameters, this type of behavior is unnecessary.
Future research efforts may explore the simulation parameter
space, consider heterogeneous predators (i.e. each predator has
its own anchor points, and, perhaps, role), specifying different
utility functionals (for example, requiring two predators to
capture, or explicitly including prey dispersion in the utility),
and, of course, studying larger scenarios with more predators.
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